یک سیستم مخابراتی نوری مانند تمام سیستمهای مخابراتی از چند قسمت اصلی از جمله فرستنده(transmitter) ،محیط انتقال (channel) و گیرنده (receiver) تشکیل شده است. درتمام سیستمهای مخابراتی محدودیت اصلی برای ارسال بانرخ بالای اطلاعات (high bit rate) به خاطر رفتارهای غیرخطی و نامطلوب هرکدام از قسمت های سیستم است. به همین دلیل، محدوده فرکانسی سیستم محدود می شود. درسیستمهایی مانند تلفن، این محدودیت ازکانال ناشی می شود، یعنی سیم تلفن رفتار خوب خود را فقط دریک محدوده کوچک ازفرکانس حفظ می کند. ویژگی اصلی کانال ارسال مخابرات نوری (که همان فیبر نوری است) محدوده وسیع فرکانسی کارکرد آن است. به همین دلیل، توان ارسال بانرخ بالا(حتی تاحدود1012 bps ) درفیبرنوری وجوددارد.
Fig 1. Typical Optical Communication System
ایده استفاده شده درفیبر نوری این است که وقتی نورازیک محیط با ضریب شکست n1 می خواهد وارد یک محیط با ضریب شکستn2 شود، اگرزاویه تابش از یک حدی (زاویه حد) بیشترشودانعکاس پیدا می کند و به محیط n1 برمی گردد. با همین ایده نور را در طی مسیرش درون فیبر نگه می دارند.
Fig 2. Fiber Optical Physical Medium
درسیستمهای مخابراتی درحین انتقال سیگنال درطول کانال به علت تضعیف انرژی سیگنال درکانال، باید در وسط راه تقویت کننده (Amplifier) قرارداده شود و مقدارتضعیف فاکتور مهمی محسوب می شود. یکی ازمزیتهای اصلی فیبرنوری، میزان تضعیف بسیارپایین آن درمقایسه بابقیه کانالها می باشد. همانطورکه درشکل 3 دیده می شود، میزان تضعیف فیبردرطول موج 1550nm)) و(1310nm) بسیارپایین است (حدود0.02-0.03 db/km ) .نورهای ارسالی درهمین دو محدوده هستند. دراین حدود تضعیف درمسافتهای چند صد کیلومترنیازبه تقویتی نداریم.
Fig 3. Attenuation in Optical fibers
فیبرنوری دومد(mode) ارسال دارد. درمد اولsingle mode)) فقط یک مد اصلی انتشار وجود دارد و تمام اطلاعات همزمان به گیرنده می رسد. درمد دوم multimode)) مدهای زیادی درانتشاروجود دارد و سیگنال در یک بازه زمانی (درمدهای متفاوت) به گیرنده می رسد.
Fig 4. Single-Mode & Multi-Mode
برای بالا بردن ظرفیت کانال نوری ، ازروش WDM (Wavelength Division Multiplexing) استفاده می شود. یعنی ازطول موجهای مختلف برای ارسال پیام های متفاوت استفاده می شود بدون اینکه باهم مخلوط شوند. درقسمت transmitter مخابرات نوری می توان ازLaser یاLED(Light Emitting Diode)s استفاده کرد. از خصوصیات Laser، قدرت بالا، عرض باند بالا، کنترل خوب طول موج و قیمت بالای آن نسبت به LED است.
درقسمت receiver ازPhotodiode یاAvalanche Photodiode (که دارای توان بالاتر و نویز بیشتر نسبت به photodiode است.) استفاده می شود.
برای ایجاد یک شبکه مخابراتی نوری ازمیان سه topology اصلی star، bus، ring مناسب ترین شبکه برای فیبرنوری شبکه ring است.Fig 5.Optical Network Topologies
فیبرهای نوری
فیبر نوری ، کریستالی است که پس از عبور از دستگاه مخصوص به تارهای شیشه ای بسیار نازک تبدیل می شود و طی فرآیندی به رنگهای مختلف درمی آید و سپس کنارهم چیده می شود.
تارهای فیبرنوری یک نگهدارنده در وسط وکاوری روی خود دارند. تارهای فیبر نوری یا Core در انواع مختلف به تعداد 4،6، 12، 24، 48، 72، 144 و... درون کابل های فیبر نوری قرار می گیرند.
به دلیل استفاده از فناوری تابش نور و حرکت آن درون تارهای فیبر می باید هنگام نصب آنها خمیدگی به اندازه مناسب رعایت شود که در غیر این صورت و ایجاد زاویه مثلا 90 درجه نور با خارج شدن از تار هدر می رود. فیبرهای نوری به عنوان زیرساختی مخابراتی برای صنایع مختلف به منظور انتقال هرگونه سیگنال اعم از صدا، تصویر، داده و... به کار می رود.
انتقال داده ها
پس از این که اطلاعات به وسیله یک منبع تولیدکننده یا سرور اولیه در حالات صفر و یک تولید شد به صورت سیگنال های الکتریکی به سمت دستگاهی به نام Optical Line Driver می رود.
این دستگاه مولد لیزر است و دو درگاه ورودی و خروجی دارد. سیگنال الکتریکی پس از ورود از درگاه ورودی و انجام عمل مدولاسیون به نور تبدیل و از درگاه خروجی به درون تارهای فیبرنوری تابیده می شود.
در مدت زمان کوتاهی نور به مقصد می رسد، و از طریق درگاه ورودی دستگاه مشابه پس از طی فرآیند مدولاسیون مجدد به ماهیت سیگنال الکتریکی اولیه بدل و از دستگاه خارج می شود.
انتقال داده با سرعتی معادل 300 هزار کیلومتر برثانیه (سرعت نور) انجام می شود. در انجام هر رفت و برگشت اطلاعاتی همواره یک زوج تار فیبر نوری فعال است که یکی ارسال و دیگری دریافت را به عهده دارد.
این همه مزایا
در مقایسه با انواع دیگر تجهیزات انتقال سیگنال ازجمله ماکروویو ماهواره ، فیبر نوری خصوصیات مثبت منحصر به فردی دارد.
فیبرهای نوری حجم بالایی از اطلاعات یعنی پهنای باند بسیار بسیار وسیعی را منتقل می کنند، مثلا پهنای باندی حدود 40 گیگابیت بر ثانیه (40 میلیارد بیت برثانیه)، یعنی چیزی حدود 480 هزار کانال 64K قابل انتقال است.
از دیگر مزایا می توان به از میان رفتن مشکل مسافت اشاره کرد به طور مثال در گذشته در فاصله کوتاه 3کیلومتری تنها می توانستیم 30 کانال روی باند صدا جابه جا کنیم ، اما با این فناوری پهنای باند 40 گیگابایتی را می توان بیش از 100 کیلومتر منتقل کرد.
همچنین میزان نویز یا اختشاش پایین ، عدم هک اطلاعات میان راهی ، عدم تاخیر در ارسال اطلاعات و ارسال در کوتاه ترین زمان ممکن در فاصله ثابت و صرفه اقتصادی از دیگر مزایای فناوری فیبرنوری به شمار می رود.
در گذشته به دلیل استفاده از فناوری هایی چون کابلها و رادیو ماکروویوها با مشکلات بسیاری بخصوص در نقاط دریایی مواجه بودیم که از جمله این مشکلات محو سیگنال های مخابراتی یا پدیده فیدینگ بود، اما هم اکنون با بهره گیری از فیبرنوری مشکلات برطرف شده است ؛ همچنین عدم تاثیر القائات الکتریکی مانند جریان برق و انتقال شفاف صدا در این فناوری از شاخص ها و مزایایی آن محسوب می شود.
پهنای باند روی سیم برق
کارشناسان همواره می کوشند راههای مناسب تری برای انجام فرآیندهای ارتباطاتی بیابند که بهره مندی از کابلهای برق به عنوان بستری آماده و فراگیر گزینه ای جالب توجه است.
در فرآینده optical ground wire) OPGW)یا انتقال فیبرنوری از درون کابلهای برق کابلهای فیبرنوری درون یک کابل خالی به نام کابل زمین روی دکل های فشار قوی برق در نوع ولتاژ بالایا High Voltage قرار می گیرند.
پس از انتقال از دکل ها به دستگاهی به نام Power Line Communication) PLC)در ولتاژ متوسط یا Medium Voltage وارد می شود و پس از آن قابل ارائه روی سیمهای معمولی برق به منازل است.
و اما...
رفته رفته با افزایش شبکه فیبرنوری و پیاده سازی پروتکل های جدید در صنعت مخابرات ، زیرساخت های لازم برای ارائه سرویس هایی چون اینترنت پرسرعت در پهنای باند وسیع ایجاد می شود.
در این میان بهره گیری از بستر برق سبب می شود هر کاربر با تهیه مودمی مخصوص از طریق پریز برق منزل خود به شبکه جهانی اینترنت متصل شود و سرویس های مورد نیاز را دریافت کند.
کارشناسان معتقدند تحقق این موضوع انقلابی در عرصه صنعت ITایجاد می کند که در نتیجه آن به اهداف جامعه اطلاعاتی جهانی نزدیک خواهیم شد.
اینترنت پر سرعت
هم اکنون شبکه مخابراتی و ارتباطاتی کشور با فناوری SDHو براساس پروتکل 8TM64 در پهنای باند 10 گیگابایت بر ثانیه قدرت انتقال 120 هزار کانال را روی یک زوج تار فیبرنوری دارد؛ اما با ظهور پروتکل جدیدی موسوم به DWDMکه تقریبا تا یک ماه آینده در کشور مراحل آزمایش آن اجرا می شود طی زمان کوتاه در شبکه مستقر می شود و نقش مالتی پکس یا چند برابر کننده را ایفا می کند.
این پروتکل ، قدرتی 160 برابر به کانال ها می دهد و بی نهایت کانال منتقل می کنند. در این فرآیند پهنای باند معادل 6/1 ترابیت برثانیه در اختیار قرار گرفته که از آن به عنوان زیر ساخت در انتقال سیگنال های مختلف می توان استفاده کرد.
براساس این پروتکل ، دسترسی کاربران به اینترنت پرسرعت نیز مهیا خواهد شد و کابوس تاخیر در ارائه سرویس های تحت وب به پایان می رسد.
نیروگاههای هستهای حدود 17 درصد برق را تأمین میکنند برخی کشورها برای تولید نیروی الکتریکی خود، وابستگی بیشتری به انرژی هستهای دارند. براساس آمار آژانس انرژی اتمی، 75 درصد برق کشور فرانسه در نیروگاههای هستهای تولید میشود و در ایالات متحده، نیروگاههای هستهای 15 درصد برق را تأمین میکنند. بیش از چهارصد نیروگاه هستهای در سراسر دنیا وجود دارد که بیش از یکصد عدد آنها در ایالات متحده واقع شده است. یک نیروگاه هستهای بسیار شبیه به یک نیروگاه سوخت فسیلی تولید کننده انرژی الکتریکی است و تنها تفاوتی که دارد، منبع گرمایی تولید بخار است. این وظیفه در نیروگاه هستهای برعهده رآکتور هستهای است.
رآکتور هسته ای همه رآکتورهای هستهای تجاری از طریق شکافت هستهای گرما تولید میکنند. همانطور که میدانید، شکافت اورانیوم نوترون های زیادی آزاد میکند، بیشتر از آنکه لازم باشد. اگر شرایط واکنش مساعد باشد فرآیند به طور خود به خودی انجام میشود و یک زنجیره از شکافت های هستهای به وجود میآید. نوترونهایی که از فرآیند شکافت آزاد میشوند، بسیار سریعند و هستههای دیگر نمیتوانند آنها را به راحتی جذب کنند. از این رو در اکثر رآکتورها قسمتی به نام کند کننده نوترون وجود دراد که در آن از سرعت نوترونها کاسته میشود و در نتیجه نوترونها به راحتی جذب میشوند. چنین نوترونهایی آن قدر کند میشوند تا با هسته راکتور به تعادل گرمایی برسند. نام گذاری این نوترونها به نوترونهای گرمایی یا نوترونهای کند هم از همین رو است. مقدار انرژی گرمایی که در یک رآکتور پارامتر بحرانی است و با کنترل آن میتوان رآکتور را در حالت عادی نگاه داشت. این کار با تنظیم تعداد میلههای کنترل درون رآکتور صورت میگیرد. میله کنترل از مواد جذب کننده نوترون ساخته شده است و با افزایش یا کاهش جذب نوترون، میتوان گسترش واکنش زنجیرهای را کاهش یا افزایش داد. البته با استفاده از کند کنندههای نوترون یا تغییر دادن نحوه قرار گیری میلههای سوخت هم میتوان انرژی خروجی رآکتور را کنترل کرد.
طراحی یک رآکتور رآکتورهای هستهای برای انجام واکنش های هستهای در مقیاس وسیع طراحی میشوند. گرما، اتمهای جدید و تابش بسیار شدید نوترون، محصولات واکنش انجام شده در رآکتور هستند و بسته به استفادهای که از رآکتور میشود، از یکی از محصولات استفاده میشود. در یک نیروگاه هستهای تولید برق از انرژی گرمایی تولید شده برای چرخاندن توربین و درنهایت تولید انرژی الکتریکی استفاده میشود. در برخی رآکتورهای نظامی و آزمایشی بیشتر از باریکه نوترون پر انرژی استفاده میشود تا مواد ساده را به عناصر کم یاب و جدیدی تبدیل کنند. هدف از رآکتور هر چه باشد، برای به دست آوردن این محصولات لازم است یک واکنش هستهای زنجیرهای به طور پیوسته ادامه یابد. برای ادامه یک واکنش زنجیرهای هم رآکتور باید در حالت بحرانی یا فوق بحرانی قرار داشته باشد. کند کننده و وسیله کنترل در فراهم آوردن چنین شرایطی نقش بسیار مهمی برعهده دارند. رآکتوری که از کند کننده استفاده میکند، رآکتور گرمایی یا رآکتور کند نامیده میشود. این رآکتورها با توجه به نوع کند کنندهای که مورد استفاده قرار میگیرد طبقه بندی میشوند. آب معمولی ( آب سبک )، آب سنگین و گرافیت، مواد رایج کند کننده هستند. البته گرافیت مشکلات فراوانی را به وجود میآورد و بسیار خطرآفرین است، مانند حادثه انفجار چرنوبیل یا آتش سوزی وانیدسکیل. رآکتورهایی که از کند کنندهها استفاده نمیکنند، رآکتورهای سریع خوانده میشوند. در این نوع رآکتورها فشار ذرات نوترون بسیار بالا است و از این رو میتوان برخی واکنش های هستهای را در آنها انجام داد که ترتیب دادن آنها در رآکتور کند بسیار مشکل است. شرایط خاصی که در رآکتورهای سریع وجود دارد، سبب میشود بتوان هسته اتم توریوم و برخی ایزوتوپ های دیگر را به سوخت هستهای قابل استفاد تبدیل کرد. چنین رآکتوری میتواند سوختی بیش از حد نیاز خود را تولید کند و به همین دلیل به آن رآکتور سوخت ساز هم گفته میشود.
در همه رآکتورها، قلب رآکتور که دمای بسیار زیادی دارد باید خنک شود. در یک نیروگاه هسته ای، سیستم خنک ساز به نوعی طراحی میشود که از گرمای آزاد شده به بهترین شکل ممکن استفاده شود. در اغلب این سیستمها از آب استفاده میشود. اما آب نوعی کند کننده هم محسوب میشود و از این رو نمیتواند در رآکتورهای سریع مورد استفاده قرار گیرد. در رآکتورهای سریع از سدیم مذاب یا نمک های سدیم استفاده میشود و دمای عملیاتی خنک ساز بالاتر است. در رآکتورهایی که برای تبدیل مورد طراحی شده اند، به راحتی گرمای آزاد شده را در محیط آزاد میکنند. در یک نیروگاه هسته ای، رآکتور کند منبع آب را گرم میکند و آن را به بخار تبدیل میکند. بخار آب توربین بخار را به حرکت در میآورد، توربین نیز ژنراتور را میچرخاند و به این ترتیب انرژی تولید میشود. این آب و بخار آن در تماس مستقیم با راکتور هستهای است و از این رو در معرض تابش های شدید رادیواکتیو قرار میگیرند. برای پیشگیری از هر گونه خطر مرتبط با این آب رادیواکتیو، در برخی رآکتورها بخار تولید شده را به یک مبدل حرارتی ثانویه وارد میکنند و از آن به عنوان یک منبع گرمایی در چرخه دومی از آب و بخار استفاده میکنند. بدین ترتیب آب و بخار رادیواکتیو هیچ تماسی با توربین نخواهند داشت.
انواع رآکتورهای گرمایی در در رآکتورهای گرمایی علاوه برکند کننده، سوخت هستهای ( ایزوتوپ قابل شکافت القایی)، مخزن بخار و لولههای منتقل کننده آن، دیوارههای حفاظتی و تجهیزات کنترل و مشاهده سیستم رآکتور نیز وجود دارند. البته بسته به این که این رآکتورها از کانالهای سوخت فشرده شده، مخزن بزرگ بخار یا خنک کننده گازی استفاده کنند، میتوان آنها را به سردسته تقسیم کرد. الف – کانالهای تحت فشار در رآکتورهای RBMK و CANDU استفاده میشوند و میتوان آنها را در حال کارکردن رآکتور، سوخت رسانی کرد. ب – مخزن بخار پرفشار داغ، رایجترین نوع رآکتور است و در اغلب نیروگاههای هستهای و رآکتورهای دریایی ( کشتی، ناوهواپیمابر یا زیردریایی ) از آن استفاده میشود. این مخزن میتواند به عنوان لایه حفاظتی نیز عمل کند. ج – خنک سازی گازی: در این رآکتورها به جای آب، از یک سیال گازی شکل برای خنک کردن رآکتور استفاده میشود. این گاز در یک چرخه گرمایی با منبع حرارتی راکتور قرار میگیرد و معمولاً از هلیوم برای آن استفاده میشود، هر چند که نیتروژن و دی اکسید کربن نیز کاربرد دارند. در برخی رآکتورهای جدید، رآکتور به قدری گرما تولید میکند که گاز خنک کن میتواند مستقیما یک توربین گازی را بچرخاند، در حالی که در طراحی های قدیمی تر گاز خنک کن را به یک مبدل حرارتی میفرستادند تا در یک چرخه دیگر، آب را به بخار تبدیل کند و بخار داغ، یک توربین بخار را بگرداند.
بقیه اجزای نیروگاه هسته ای غیر از رآکتور که منبع گرمایی است، تفاوت اندکی بین نیروگاه هستهای و یک نیروگاه حرارتی تولید برق با سوخت فسیلی وجود دارد. مخزن بخار تحت فشار معمولا درون یک ساختمان بتونی تعبیه میشود که این ساختمان به عنوان یک سد حفاظتی در برابر تابش رادیواکتیو عمل میکند. این ساختمان هم درون یک مخزن بزرگتر فولادی قرار میگیرد. هسته رآکتور و تجهیزات مرتبط با آن درون این مخزن فولادی قرار گرفتهاند و کارکنان میتوانند راکتور را تخلیه یا سوخت رسانی کنند. وظیفه این مخزن فولادی، جلوگیری از نشت هر گونه گاز یا مایع رادیواکتیو از درون سیال است. در نهایت این مخزن فولادی هم به وسیله یک ساختمان بتونی خارجی محافظت میشود. این ساختمان به قدری محکم است که در برابر اصابت یک هواپیمای جت مسافربری ( مشابه حادثه یازده سپتامبر ) هم تخریب نمیشود. وجود این ساختمان حفاظتی دوم برای جلوگیری از انتشار مواد رادیواکتیو در اثر هرگونه نشت از حفاظ اول ضروری است. در حادثه انفجار چرنوبیل، فقط یک ساختمان حفاظتی وجود داشت و همان موجب شد موادراکتیو در سطح اروپا پخش شود.
رآکتورهای هستهای طبیعی در طبیعت هم میتوان نشانه هایی از رآکتور هستهای پیدا کرد، البته به شرطی که تمام عوامل مورد نیاز به طور طبیعی در کنار هم قرار گرفته باشند. تنها نمونه شناخته شده یک رآکتور هستهای طبیعی دو میلیارد سال پیش در منطقه اوکلو در کشور گابون ( قاره آفریقا ) فعالیتش را آغاز کرده است. البته دیگر چنین رآکتورهایی روی زمین شکل نمیگیرند، زیرا واپاشی رادیواکتیو این مواد ( به خصوص U-235 ) در این زمان طولانی 5/4 میلیارد ساله ( سن زمین )، فراوانی U-235 را در منابع طبیعی این رآکتورها بسیار کاهش داده است، به طوری که مقدار آن به پایین تر از حد مورد نیاز آغاز یک واکنش زنجیرهای رسیده است. این رآکتورهای طبیعی زمانی شکل گرفتند که معادن غنی از اورانیوم به تدریج از آب زیرزمینی یا سطحی پر شدند. این آب به صورت کند کننده عمل کرد و واکنش های زنجیرهای شدیدی به وقوع پیوست. با افزایش دما، آب کند کننده بخار میشد و رآکتور خاموش شد. پس از مدتی، این بخارها به مایع تبدیل میشدند و دوباره رآکتور به راه میافتاد. این سیستم خودکار و بسته، یک رآکتور را کنترل میکرد و برای صدها هزار سال، این رآکتور را فعال نگاه میداشت. مطالعه و بررسی این رآکتورهای هستهای طبیعی بسیار ارزشمند است، زیرا میتواند به تحلیل چگونگی حرکت مواد رادیواکتیو در پوسته زمین کمک کند. اگر زمین شناسان بتوانند را از این حرکت ها را شناسایی کنند، میتوانند راه حل های جدیدی برای دفن زبالههای هستهای پیدا کنند تا روزی خدای ناکرده، این ضایعات خطرناک به منابع آب سطح زمین نشت نکنند و فاجعهای بشری به بار نیاورند.
انواع رآکتورهای گرمایی الف – کند سازی با آب سبک: a- رآکتور آب تحت فشار Pressurized Water Reactor(PWR) b- رآکتور آب جوشان Boiling Water Reactor(BWR) c- رآکتور D2G
ب- کند سازی با گرافیت: a- ماگنوس Magnox b- رآکتور پیشرفته با خنک کنندی گازی Advanced Gas-Coaled Reactor (AGR) c- RBMK d- PBMR
ج – کند کنندگی با آب سنگین: a – SGHWR b – CANDU
رآکتور آب تحت فشار، PWR رآکتور PWR یکی از رایجترین راکتورهای هستهای است که از آب معمولی هم به عنوان کند ساز نوترونها و هم به عنوان خنک ساز استفاده میکند. در یک PWR، مدار خنک اولیه از آب تحت فشار استفاده میکند. آب تحت فشار، در دمایی بالاتر از آب معمولی به جوش میآید، از این دوچرخه خنک ساز اولیه را به گونهای طراحی میکنند که آب با وجود آنکه دمایی بسیار بالا دارد، جوش نیاید و به بخار تبدیل نشود. این آب داغ و تحت فشار در یک مبدل حرارتی، گرما را به چرخه دوم منتقل میکند که یک نوع چرخه بخار است و از آب معمولی استفاده میکند. دراین چرخه آب جوش میآید و بخار داغ تشکیل میشود، بخار داغ یک توربین بخار را میچرخاند، توربین هم یک ژنراتور و در نهایت ژنراتور، انرژی الکتریکی تولید میکند. PWR به دلیل دارابودن چرخه ثانویه با BWR تفاوت دارد. از گرمای تولیدی در PWR به عنوان سیستم گرم کننده درنواحی قطبی نیز استفاده شده است. این نوع رآکتور، رایجترین نوع رآکتورهای هستهای است و در حال حاضر، بیش از 230 عدد از آنها در نیروگاههای هستهای تولید برق و صدها رآکتور دیگر برای تأمین انرژی تجهیزات دریایی مورد استفاده قرار میگیرند.
خنک کننده همان طور که میدانید، برخورد نوترونها با سوخت هستهای درون میلههای سوخت، موجب شکافت هسته اتمها میشود و این فرآیند هم به نوبه خود، گرما و نوترونهای بیشتری آزاد میکند. اگر این حرارت آزاد شده منتقل نشود، ممکن است میلههای سوخت ذوب شوند و ساختار کنترلی رآکتور از بین برود ( و البته خطرهای مرگ آوری که به دنبال آن روی میدهند. ) در PWR، میلههای سوخت به صورت یک دسته در ساختاری، ترسیمی قرار گرفتهاند و آب از کف رآکتور به بالا جریان پیدا میکند. آب از میان این میلههای سوخت عبور میکند و به شدت گرم میشود، به طوری که به دمای 325 درجه سانتی گراد میرسد. درمبدل حرارتی، این آب داغ موجب داغ شدن آب در چرخه دوم میشود و بخاری با دمای 270 درجه سانتی گراد تولید میکند تا توربین را بچرخاند.
کند کننده نوترونهای حاصل از یک شکافت هستهای بیش از آن حدی گرمند که بتوانند یک واکنش شکافت هستهای را آغاز کنند. انرژی آنها را باید کاهش داد تا با محیط اطراف خود به تعادل گرمایی برسند. محیط اطراف نوترونها ( قلب رآکتور ) دمایی در حدود 450 درجه سانتی گراد دارد. در یک PWR، نوترونها در پی برخورد با مولکولهای آب خنک ساز، انرژی جنبشی خود را از دست میدهند؛ به طوری که پس از 8 تا 10 برخورد ( البته به طور متوسط ) با محیط هم دما میشوند. در این حالت، احتمال جذب نوترونها از سوی هسته U-235 بسیار زیاد است ودر صورت جذب، بالافاصله هسته U-236 جدید دچار شکافت میشود. مکانیسم حساسی که هر رآکتور هستهای را کنترل میکند، سرعت آزاد سازی نوترونها در طول یک فرآیند شکافت است به طور متوسط از هر شکافت، دونوترون و مقدار زیادی انرژی آزاد میشود. نوترونهای آزاد شده اگر با هسته U-235 دیگری برخورد کنند، شکافت دیگری را سبب میشوند و در نهایت یک واکنش زنجیرهای روی میدهد. اگر تمام این نوترونها در یک لحظه آزاد شوند، تعدادشان به قدری زیاد میشود که باعث ذوب شدن راکتور خواهد شد. ( تعداد ذرات پر انرژی، دمای یک سیستم را تعیین میکند. معادله بوتنرمن، این ارتباط را توصیف میکند. ) خوشبختانه برخی از این نوترونها پس از یک بازه زمانی نه چندان کوتاه ( حدود یک دقیقه ) تولید میشوند و سبب میشوند دیگر عوامل کنترل کننده از این تاخیر زمانی استفاده کرده، اثر خود را داشته باشند. یکی از مزیت های استفاه از آب در PWR، این است که اثر کند سازی آب با افزایش دما کاهش مییابد. در حالت عادی، آب در فشار 150 برابر فشار یک اتمسفر قرار دارد ( حدود 15 مگا پاسکال ) و در قلب رآکتور به دمای 325 درجه سانتی گراد میرسد. درست است که آب با فشار پانزده مگا پاکسال در این دما جوش نمیآید، ولی به شدت از خاصیت کند کنندگی اش کاسته میشود، بنابراین آهنگ واکنش شکافت هستهای کاهش مییابد، حرارت کمتری تولید میشود و دما پایین میآید. دما که کاهش یابد، توان رآکتور افزایش مییابد و دما که افزایش یابد توان راکتور کاهش مییابد؛ پس خود سیستم PWR دارای یک سیستم خود تعادلی در رآکتور است و تضمین میکند توان رآکتور در کمترین میزان مورد نیاز برای تأمین گرمای سیستم بخار ثانویه است. در اغلب رآکتورهای PWR، توان رآکتور را در دوره فعالیت معمولی با تغییرات غلظت بورون ( در شکل اسید بوریک ) در چرخه خنک کننده اولیه کنترل اولیه کنترل میکنند سرعت جریان خنک کننده اول در رآکتورهای PWR معمولی ثابت است. بورون یک جذب کننده قوی نوترون است و با افزایش یا کاهش غلظت آن، میتوان شدت فعالیت راکتور را کاهش یا افزایش داد. برای این کار، یک سیستم کنترلی پیچیده شامل پمپ های فشار بالا که آب را در فشار 15 مگا پاسکال از چرخه خارج میکند، تجهیزات تغییر غلظت اسید بوریک و تزریق مجدد آب به چرخه خنک ساز مورد نیاز است. یکی از اشکالات راکتورهای شکافت، این است که حتی پس از توقف واکنش شکافت، هنوز هم واپاشی های رادیواکتیوی انجام میشود و حرارت زیادی آزاد میشود که میتواند راکتور را ذوب کند. البته سیستم های حفاظتی و پشتیبانی متعددی برای جلوگیری از این واقعه وجود دارند، با این حال ممکن است در اثر پیچیدگی های این سیستم، برهمکنش های پیش بینی نشده یا خطاهای عملیاتی مرگ آفرینی در شرایط اضطراری روی دهند. در نهایت، هر رآکتور با یک حفاظ ساختمانی بتونی احاطه شده است که آخرین سد در برابر تشعشعات رادیواکتیو است.
رآکتور آب جوشان، BWR در رآکتور آب جوشان، از آب سبک استفاده میشود. آب سبک، آبی است که در آن فقط هیدروژن معمولی وجود دارد. ) BWR اختلاف زیادی با رآکتور آب تحت فشار ندارد، غیر از اینکه در BWR فقط یک چرخه خنک کننده وجود دارد و آب مستقیما در قلب راکتور به جوش میآید. فشار آب در BWR کمتر از PWR است، به طوری که در بیشترین مقدار به 75 برابر فشار جو میرسد ( 5/7 مگا پاسکال ) و بدین ترتیب آب در دمای 285 درجه سانتی گراد به جوش میآید. رآکتور BWR به شکلی طراحی شده که بین 12 تا 15 درصد آب درون قلب رآکتور به شکل بخار در قسمت بالای آن قرار میگیرد. بدین ترتیب عملکرد بخش بالایی و پایینی هسته رآکتور با هم تفاوت دارند. در بخش بالایی قلب رآکتور، کند سازی کمتری صورت میگیرد و در نتیجه بخش بالایی کمتر است. در حالت کلی دو مکانیسم برای کنترل BWR وجود دارد: استفاده از میلههای کنترل و تغییر جریان آب درون راکتور. الف – بالا بردن یا پایین آوردن میلههای کنترل، روش معمولی کنترل توان رآکتور در حالت راه اندازی رآکتور تا رسیدن به 70 درصد حداکثر توان است. میلههای کنترل حاوی مواد جذب کننده نوترون هستند؛ در نتیجه پایین آوردن آنها موجب افزایش جذب نوترون در میله ها، کاهش جذب نوترون در سوخت و درنهایت کاهش آهنگ شکافت هستهای و پایین آمدن توان رآکتور میشود. بالا بردن میلههای سوخت دقیقاً نتیجه معکوس میدهد. ب – تغییرات جریان آب درون رآکتور، زمانی برای کنترل رآکتور مورد استفاده قرار میگیرد که راکتور بین 70 تا صد درصد توان خود کار میکند. اگر جریان آب درون رآکتور افزایش یابد، حباب های بخار در حال جوش سریع تر از قلب راکتور خارج میشوند و آب درون قلب رآکتور بیشتر میشود. افزایش مقدار آب به معنی افزایش کندسازی نوترون و جذب بیشتر نوترونها از سوی سوخت است و این یعنی افزایش توان راکتور. با کاهش جریان آب درون رآکتور، حباب ها بیشتر در رآکتور باقی میمانند، سطح آب کاهش مییابد و به دنبال آن کندسازی نوترونها و جذب نوترون هم کاهش مییابد و در نهایت توان رآکتور کاهش مییابد. بخار تولید شده در قلب رآکتور از شیرهای جدا کننده بخار و صفحات خشک کن ( برای جذب هر گونه قطرات آب داغ ) عبور میکند و مستقیماً به سمت توربین های بخار که بخشی از مدار رآکتور محسوب میشوند، میرود. آب اطراف رآکتور همواره در معرض تابش و آلودگی رادیواکتیو است و از آنجا که توربین هم در تماس مستقیم با این آب است، باید پوشش حفاظتی داشته باشد. اغلب آلودگی های درون آب عمر کوتاهی دارند ( مانند N16 که بخش اعظم آلودگی های آب را تشکیل میدهد و نیمه عمرش تنها 7 ثانیه است )، بنابراین مدت کوتاهی پس از خاموش شدن رآکتور میتوان به قسمت توربین وارد شد. در رآکتور BWR، افزایش نسبت بخار آب به آب مایع درون رآکتور موجب کاهش گرمای خروجی میشود. با این حال، یک افزایش ناگهانی در فشار بخار، سبب بروز یک کاهش ناگهانی در نسبت بخار به آب مایع درون رآکتور میشود که خود، سبب افزایش توان خروجی میشود. این شرایط و دیگر حالت های خطرساز، موجب شده است از سیستم کنترلی اسید بوریک ( بورون ) نیز استفاده شود، بدین شکل که در سیستم پشتیبان خاموش کننده اضطراری، محلول اسید بوریک با غلظت بالا به چرخه خنک کننده تزریق میشود. خوبی این سیستم این است که اسید اوریک، یک خورنده قوی است و معمولا در PWR سبب میشود تلفات ناشی از خوردگی قابل توجه باشد. در بدترین شرایط اضطراری که تمام سیستم های امنیتی از کار افتاد، هر رآکتور به وسیله یک ساختمان حفاظتی از محیط اطراف جدا شده است. در یک رآکتور BWR جدی، حدود 800 دسته واحد سوخت قرار میگیرد و در هر دسته بین 74 تا 100 میله سوخت قرار میگیرد. این چنین حدود 140 تن اورانیوم در قلب رآکتور ذخیره میشود.
• رآکتور D2G رآکتور هستهای D2G را میتوان در تمام ناوهای دریایی ایالات متحده میتوان پیدا کرد. D2G مخفف عبارت زیراست: رآکتور ناو جنگی D=Destroyer-sized reactor نس دوم 2=Second Geneation ساخت جنرال الکتریک G= General – Electric built بدین ترتیب، D2G را میتوان مخفف این عبارت دانست: رآکتور هستهای نسل دوم ویژه ناوهای جنگی ساخت جنرال الکتریک. این رآکتور برای تولید حداکثر 150 مگا وات انرژی الکتریکی و عمر مفید 15 سال مصرف معمولی طراحی شده است. در این رآکتور، برای مخزن بخار دو رآکتور وجود دارد و طوری طراحی شده که بتوان هر دو اتاق توربین را با یک رآکتور به راه انداخت. اگر هر دو رآکتور فعال باشند، ناو به سرعت 32 گره میرسد. اگر یک رآکتور فعال باشد و توربین ها متصل به هم باشند، سرعت ناو به 25 تا 27 گره خواهد رسید و اگر فقط یک رآکتور فعال باشد ولی توربین ها جدا باشند، سرعت فقط 15 گره خواهد بود
دید کلی :
بیشتر کاربردهای فنی آهنربای الکتریکی بر توانایی جذب و نگهداری اجسام آهنی مبتنی است. در این کاربردها نیز آهنربای الکتریکی نسبت به آهنرباهای دائمی امتیازهای چشم گیری دارند. زیرا تغییر جریان داخلی آهنربای الکتریکی تغییر سریع نیروی بالابرنده آن را امکان پذیر میسازد.
نیروی آهنربایی :
نیرویی که در آهنربایی با آن اجسام آهنی را جذب میکند با افزایش فاصله بین آهنربا و آهن به تندی کاهش مییابد. به این دلیل ، نیروی بالابرنده آهنربای الکتریکی ، معمولا با نیرویی معین میشود که بر آهن واقع در مجاورت بلافصله خود وارد میکند. به عبارت دیگر ، نیروی بالابرنده یک آهنربا مساوی نیرویی است که برای جدا کردن آن تکه تمیزی از آهن صاف که جذب آن شده لازم است.
آهنربای الکتریکی با نیروی بالا برندگی زیاد :
برای بدست آوردن آهنربای الکتریکی با نیروی بالا برنده تا حد امکان زیاد ، باید سطح تماس بین قطبهای آهنربا و جسم آهنی جذب شده (معروف به جوشن) را افزایش داد، و سعی کرد تا تمام خطوط میدان مغناطیسی فقط از آهن بگذرد، یعنی تمام فواصل هوا یا شکافهای بین جوشن و قطبهای آهنربا حذف شوند. برای این منظور باید سطوح قوه تغذیه میشود میتواند باری به جرم 80 تا 100Kg را نگه دارد.
کاربرد آهنرباهای الکتریکی با نیروی بالا برندگی زیاد :
از آهنرباهای با نیروی بالابرهای بزرگ در مهندسی برای مقاصد گوناگونی استفاده میشود. مثلا ، جرثقیلهایی که با آهنربای الکتریکی کار میکنند، در کارخانههای استخراج فلز و فلزکاری برای حمل تکههای آهن یا ادوات که باید روی آن آشکار شود جذب آهنربای الکتریکی نیرومندی میشود. کافی است که جریان را وصل کنیم تا جسم در هر وضعی بر میز کار ثابت شود، یا جریان را قطع کنیم تا جسم رها شود.
برای جدا کردن مواد مغناطیسی از اجسام غیر مغناطیسی ، نظیر جداسازی سنگآهن از کلوخ «جداسازی مغناطیسی) ، جدا کنندههای مغناطیسی به کار میروند، که در آنها مادهای که باید تصفیه شود از میدان مغناطیسی نیرومند آهنربای الکتریکی میگذرند. این میدان تمام ذرات مغناطیسی را از ماده جدا میکند.
آهنربای الکتریکی پیشرفته :
اخیرا آهنرباهای الکتریکی پرقدرت با سطوح عظیم قطبها کاربردهای مهمی در ساختمان شتابدهندهها یافتهاند، یعنی وسایلی که در آنها ذرات باردار الکتریکی الکترونها و پروتونها) تا سرعتهای بسیار بالایی که به انرژی 108 تا 109 الکترون ولت مربوطند، شتاب داده می شوند. باریکه هایی از چنین ذرات که با سرعت بسیار زیادی حرکت میکنند ابزار عمده ای برای بررسی ساختار اتمیاند. آهنرباهایی که در این وسایل به کار میروند حجمهای عظیمی دارند.
آهنرباهای الکتریکی با قطب های مخروط ناقص :
وقتی که لازم باشد میدان مغناطیسی بسیار نیرومندی را فقط در ناحیه کوچکی بدست میآوریم، آهنرباهای الکتریکی با قطبهایی به شکل مخروط ناقص به کار میروند. آن گاه در فضای کوچک بین آنها میدانی با القای مغناطیسی با 5T را میتوان به آسانی به دست آورد. چنین آهنرباهای الکتریکیای عمدتا در آزمایشگاههای فیزیک برای آزمایشهایی با میدان مغناطیسی نیرومند به کار می روند.
کاربردهای پزشکی آهنرباهای الکتریکی :
انواع دیگر آهنربای الکتریکی نیز برای مقاصد خاصی طراحی شده اند. مثلا ، پزشکها برای خارج کردن برادههای آهن که تصادفی وارد چشم شده باشند از آهنربای الکتریکی استفاده میکنند. برای خارج ساختن سوزن و سایر اشیا تیز فرو رفته در پا و سایر اعضای بدن از آهنرباها استفاده میشود